Radiation laws

Problem:

The Proton-Proton Chain is the principal set of reactions for solar-type stars to transform hydrogen to helium:
1H + 1H --> 2H + e+ + neutrino
Two protons react to form deuterium plus a positron and a neutrino
2H + 1H --> 3He + gamma-ray
The deuterium reacts with another proton to form 3He  plus another gamma-ray. 
3
He + 3He --> 4He + 2 1H
Two 3He nuclei react to form 4He and two protons.
Each proton-proton cycle generates 26.7 MeV of energy.  The Sun emits approximately 4*1026 Watts of energy.  Calculate the rate at which the sun generates neutrinos and estimate the number of solar neutrinos aping through Earth each second. Assume the sun's energy production is entirely by the proton-proton cycle.

Earth-Sun distance:  1.5*10-11 m
Earth radius:  6.37*106 m

Solution:

Problem:

Most of the neutrinos from the Sun are produced in the chain of processes called the “pp-cycle”:
(1)   p + p --> 2H + β+ + ν
(2)   p + 2H --> 3He + γ
(3)  3He + 3He --> 4He + p + p
Estimate the order of magnitude of the neutrino flux (neutrinos/(cm2s) from these reactions on Earth using the following data:
Earth-Sun distance = 1.5*1011 m
proton mass = 938.272 MeV/c2
4
He mass = 3727.379 MeV/c2
Assume the Earth can be modeled as a black body with temperature T = 300 K.  On average, it emits as much radiation as it receives from the Sun.  Use this to estimate the energy flux from the sun on Earth.

Solution:


The Wien law and the Stefan-Boltzmann law

Problem:

The light from the sun is found to have a maximum intensity near 470 nm.  Assuming the surface of the sun behaves as a black body, calculate the temperature of the sun.

Solution:

Problem:

An ideal radiator radiates with a total intensity of I = 5.68 kW/m2.  At what wavelength does the spectral emittance I(λ) peak?
(Give a numerical answer!)

Solution:

Problem:

Two concentric long tubes have radii R1 = 5 cm and R2 = 6 cm.  The outer tube is maintained at temperature T2 = 300 K and the inner tube at temperature T1 = 4 K.  Find the net thermal power absorbed by a 10 cm length of the inner tube, assuming that the emissivity is unity for both surfaces.

Solution:

Problem:

Estimate the temperature of the surface of Earth if the flux of solar energy at the Sun-Earth distance is ~1360 W/mand ~30% of solar energy is reflected back by the atmosphere.  (Make reasonable assumptions and justify them.)

Solution:

Problem:

A black plane surface at a constant high temperature Th is parallel to another black plane surface at a constant lower temperature Tl.  Between the plates is vacuum.
In order to reduce the heat flow due to radiation, a heat shield consisting of two thin black plates, thermally isolated from each other, is placed between the warm and the cold surfaces and parallel to these.  After some time stationary conditions are obtained.  By what factor X is the stationary heat flow reduced due to the presence of the heat shield?  Neglect end effects due to the finite size of the surfaces.

image

Solution:

Problem:

A sphere of radius 3 cm acts like a blackbody.  It is equilibrium with its surroundings and absorbs 30 kW of power radiated to it from the surroundings.  What is the temperature of the sphere?

Solution:

Problem:

The rate at which the radiant energy reaches the surface of earth from the sun is about 1.4 kW/m2.
The distance from earth to the sun is about 1.5 * 1011 m, and the radius of sun is about 0.7 * 109 m.
(a)  What is the rate of radiation of energy, per unit area, from the sun's surface?
(b)  If the sun radiates as an ideal black body, what is the temperature of its surface?

Solution:

Problem:

In very massive stars the pressure from electromagnetic radiation can greatly exceed that from the gas.
(a)  Show that in the hot interior of a star the radiation pressure is Prad = aT4/3, where
a = 4σ/c and σ is the Stefan Boltzmann.
(b)  Assuming a spherical star described by classical Newtonian gravity and a classical electromagnetic field, find an expression for the temperature gradient at the surface of a star when the force per unit volume associated with the radiation pressure is exactly balanced by the force per unit volume associated with gravity, assuming that the gas pressure can be neglected.
(c)  For stars dominated by radiation the temperature gradient is known to take the form
dT/dr = -3ρkL/ (16π a c T3r2),
where T is temperature, L = L(r) is the luminosity (energy per unit time crossing the radius r), and k is a measure of how strongly the photons interact with matter (opacity).  Use this and the first result to show that the star is unstable against radiation blowing surface layers off the star if the luminosity exceeds L = 4πcGM/k, where k is evaluated at the surface.
Hint:  You can complete parts (b) and (c) without completing part (a) by using the result given in part (a).

Solution:

Problem:

The Sun's spectrum, I(hν), peaks at 1.4 eV, the spectrum of Sirius A peaks at 2.4 eV, and the luminosity (total amount of energy radiated per unit time) of Sirius A is 24 times larger than that of the Sun.  Compute the diameter of Sirius A in units of the Sun's diameter.

Solution:

Problem:

Sirius A is the brightest star in the night sky, with the peak of its spectral emittance at a wavelength of 291 nanometers.
(a)  If one makes the reasonable assumption that the star radiates as a blackbody, what is its effective temperature? 
(b)  If the flux measured on Earth from Sirius A is 1.17 * 10-7 W/m2, and the distance is known to be 8.6 light-year, what is the radius of Sirius A?

Solution:


Planck's law

Problem:

Inside a blackbody cavity, the energy density per unit frequency interval, ρ(ν), is given by Planck's formula

ρ(ν) = (8πν2/c3)hν/(exp(hν/(kT)) - 1).

(a)  Derive an expression for the intensity per unit frequency interval, I(ν), of the radiation emitted by the blackbody.
(b)  Derive the Stefan-Boltzmann law.
(c)  Derive Wien's displacement law.

0x3dx/(ex - 1) = π4/15.

Solution:

Problem:

Inside a blackbody cavity, the energy density per unit frequency interval, ρ(ν), is given by Planck's formula
ρ(ν) = (8πν2/c3) hν/(exp(hν/kT) - 1).
The intensity per unit frequency interval, I(ν), of the radiation emitted by the blackbody is given by I(ν) = ¼ ρ(ν) c.
Commonly, Wien's displacement law is written as λmax (m) = (2.9*10-3 m K)/T.
Derive the Wien's displacement law for the frequency νmax (s-1), and show that νmax is NOT equal to c/ λmax.  Why?

Solution: