
January 2014 Qualifying Exam 
 

Part II 
 

Mathematical tables are allowed.  Formula sheets are provided. 

Calculators are allowed. 

Please clearly mark the problems you have solved and want to be graded.  Do only 

mark the required number of problems. 

 

Physical Constants: 

Planck constant:  h = 6.62606896 * 10
-34

 Js,  ħ = 1.054571628 * 10
-34

 Js  

Boltzmann constant:  kB = 1.3806504 * 10
-23

 J/K  

Elementary charge:  e = 1.602176487 * 10
-19

 C  

Avogadro number:  NA = 6.02214179 * 10
23

 particles/mol  

Speed of light:  c = 2.99792458 * 10
8
  m/s  

Electron rest mass:  me = 9.10938215 * 10
-31

 kg  

Proton rest mass:  mp = 1.672621637 * 10
-27

 kg  

Neutron rest mass:  mn = 1.674927211 * 10
-27

 kg  

Bohr radius:  a0 = 5.2917720859 * 10
-11

 m  

Compton wavelength of the electron:  λc = h/(mec) = 2.42631 * 10
-12

 m 

Permeability of free space:  μ0 = 4π 10
-7

 N/A
2
 

Permittivity of free space:  ε0 = 1/μ0c
2
 

Gravitational constant: G = 6.67428 * 10
-11

 m
3
/(kg s

2
) 

Stefan-Boltzmann constant:  σ =   5.670 400 * 10
-8

 W m
-2

 K
-4

 

Wien displacement law constant:  σw = 2.897 7685 * 10
-3

 m K    

Plank radiation law:  I(λ,T) = (2hc
2
/λ

5
)[exp(hc/(kT λ)) – 1]

-1
 

  



Solve 6 out of the 8 problems!  (All problems carry the same weight)  

Problem 1: 

Consider a two-dimensional infinite potential square well of width L,  

(V = 0 for 0 < x, y < L, V = infinite everywhere else) with an added perturbation 

𝐻′ = 𝑔 𝑠𝑖𝑛 (
2𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

2𝜋𝑦

𝐿
). 

(a)  Calculate the first order perturbation to the ground state energy eigenvalue. 

(b)  Calculate the first order perturbation to the first excited state energy eigenvalue 

Solution:  

Stationary perturbation theory for non-degenerate and for degenerate states 

The ground state of two-dimensional infinite potential square well is not degenerate.  The first 

excited state is two-fold degenerate. 

H = H0 + H’. 

The eigenfunctions of H0 are Φnl(x,y) = (2/L)sin(nπx/L)sin(lπy/L), with eigenvalues  

E = (n
2
 + l

2
)π

2
ħ

2
/(2mL

2
). 

(a)  For the ground state n = l = 1.  The ground state is not degenerate. 

The unperturbed ground state energy is E0
0
 = ħ

2
/(mL

2
).  The first order perturbation correction is  

E1
0
 = <Φ11|H’|Φ11> = (g4/L

2
)∫0

L
sin

2
(πx/L)

 
sin

2
(πy/ L)sin(2πx/L)

 
sin(2πy/L)dxdy. 

= (4g/L
2
)∫0

L
sin

2
(πx/L)

 
sin(2πx/L)dx)∫0

L
sin

2
(πy/L)

 
sin(2πy/L)dy = 0. 

(b)  The first excited state is two-fold degenerate. 

We can have n = 2, l = 1, or n = 1, l = 2. 

We have to diagonalize the matrix of H’ in the subspace spanned by these two degenerate states. 

(
< Φ12|𝐻′|Φ12 > −𝐸 < Φ12|𝐻′|Φ21 >

< Φ21|𝐻′|Φ12 > < Φ21|𝐻′|Φ21 > −𝐸
) = 0 

<Φ12|H’|Φ12> = (4g/L
2
)∫0

L
sin

2
(πx/L)sin(2πx/L)dx)∫0

L
sin

2
(2πy/L)

 
sin(2πy/L)dy = 0. 

<Φ21|H’|Φ21> = (4g/L
2
)∫0

L
sin

2
(2πx/L)sin(2πx/L)dx)∫0

L
sin

2
(πy/L)

 
sin(2πy/L)dy = 0. 

<Φ12|H’|Φ21> = (4g/L
2
)∫0

L
sin(πx/L)

 
sin

2
(2πx/L)dx)∫0

L
sin

2
(2πy/L)

 
sin(πy/L)dy = C 

C = (4g/π
2
)(∫ 0

π
sin(x)

 
sin

2
(2x)dx)

2
 = (4g/π

2
)*64/225. 

<Φ12|H’|Φ21> = (4g/L
2
)∫0

L
sin(πx/L)

 
sin

2
(2πx/L)dx)∫0

L
sin

2
(2πy/L)

 
sin(πy/L)dy = C 

E
2
 – C

2
 = 0.  E1

1
 = ±C.  The perturbation removes the degeneracy. 

  



Problem 2: 

A simple way to measure the speed of a bullet is with a ballistic pendulum.  As illustrated, this 

consists of a wooden block of mass M into which the bullet is shot horizontally.  The block is 

suspended from cables of length l, and the impact of the bullet causes it to swing through a 

maximum angle ϕ, as shown.  The initial speed of the bullet is v and its mass is m. 

 

(a)  What is the speed of the block V immediately after the bullet comes to rest inside the 

wooden block?  (Assume that this happens quickly) 

(b)  Find an expression for the speed v of the bullet in terms of the quantities that can be easily 

measured m, M, g, l, and ϕ. 

 

Solution: 

 

 



Problem 3: 

The tidal force ΔFφ/m of the Moon on the Earth is defined as the difference between the 

gravitational field of the Moon at a point on the Earth's surface defined by the angle φ 

and the gravitational field of the Moon at the Earth's center.  (See figure.)  Derive an expression 

for ΔFφ/m.  Simplify by assuming that R, the radius of the Earth, is much smaller than r, the 

Earth-Moon distance. 

Find the x- and y components and the tangential and radial components of ΔFφ/m. 

 

 

 
 

 

Solution: 

Newton’s law of gravity 

At the point P  ΔFφ/m = (GM/d
2
 )(ex(r - Rcosφ)/d - ey(Rsinφ)/d)  - (GM/r

2
)ex 

Here M is the mass of the moon. 

d
2
 = (r - Rcosφ)

2
 + (Rsinφ)

2
 = r

2
 + R

2
 – 2rRcosφ 

 

ΔFφ/m = (GM/(r
2
 + R

2
 – 2rRcosφ)

3/2
)[ex(1 – (R/r)cosφ) - ey(R/r)sinφ)]  - (GM/r

2
)ex 

= -(GM/r
2
))ex[(1 – (R/r)cosφ)/(1 + R

2
/r

2
– 2(R/r)cosφ)

3/2
  -1]  

-(GM/r
2
))ey(R/r)sinφ)/(1 + R

2
/r

2
– 2(R/r)cosφ)

3/2
 

 

Since r << R, we expand and neglect terms higher than first order in R/r. 

ΔFφ/m = (GM/r
2
))ex[(1 – (R/r)cosφ)/(1 – 3(R/r)cosφ)  - 1]  

-(GM/r
2
))ey(R/r)sinφ)   

(ΔFφ/m)x = (GM/r
2
)[(1 – (R/r)cosφ)/(1 – 3(R/r)cosφ)  - 1] = (2GMR/r

3
)cosφ  

(ΔFφ/m)y = -(GMR/r
3
)sinφ 

 

We have azimuthal symmetry about the x-axis. 

(ΔFφ/m)tangential = (ΔFφ/m)xsinφ - (ΔFφ/m)ycosφ = (GMR/r
3
)3cosφ sinφ = (GMR/r

3
)(3/2) sin(2φ) 

A positive (ΔFφ/m)tangential points clockwise. 

(ΔFφ/m)radial = (ΔFφ/m)xcosφ + (ΔFφ/m)ysinφ = (GMR/r
3
)(2cos

2
φ - sin

2
φ)  

= (GMR/r
3
)(2 - 3sin

2
φ) = ½(GMR/r

3
)(1 + 3sin(2φ)) 

 

  



Problem 4: 

Most of neutrinos from the Sun are produced in the chain of processes called the “pp-cycle”: 

(1)
 
  p + p --> 

2
H + β

+
 + ν 

(2)
 
  p + 

2
H --> 

3
He + γ 

(3)  
3
He + 

3
He --> 

4
He + p + p 

Estimate the order of magnitude of the neutrino flux (neutrinos/(cm
2
 s) from these reactions on 

Earth using the following data: 

Earth-Sun distance = 1.5*10
11

 m 

proton mass = 938.272 MeV/c
2
 

4
He mass = 3727.379 MeV/c

2
 

Assume the Earth can be modelled as a black body with temperature T = 300K.  On average, it 

emits as much radiation as it receives from the Sun.  Use this to estimate the energy flux from the 

sun on Earth. 

 

 

Solution: 

Nuclear energy, radiation laws 

Producing one 
4
He nucleus releases 2 neutrinos.  How much energy is released in the production 

of one 
4
He? 

E = 4m(p)c
2
 – m(

4
He)c

2
 = 25.7 MeV  (The positrons will annihilate with electrons, thus 

producing gammas (energy). 

Thus 2 neutrinos are produced for every 25.7 MeV of energy that is released. 

What is the solar energy flux at the sun-earth distance? 

We assume that it is equal to the power per unit area emitted by Earth. 

I = σT
4
 =   (5.67 * 10

-8
 W m

-2
 K

-4
)*(300 K)

4
 = 459 W/m

2
 = 2.87*10

15
 MeV/(m

2
 s) 

We therefore expect a neutrino flux of approximately 2* 2.87*10
15

 /25.7 neutrinos/(m
2
 s), 

or 2.23*10
14

 neutrinos/(m
2
 s) = 2.23*10

10
 neutrinos/(cm

2
 s). 

(The energy flux is underestimated, the real neutrino flux is ~6*10
10

 neutrinos/(cm
2
 s).)  



Problem 5: 

(a)  From Maxwell's equations, derive the conservation of energy equation,  

                                  ,  

 

where u is the energy density and S is the Poynting vector. 

(b)  A long, cylindrical conductor of radius a and conductivity σ carries a constant current 

I.  Find S at the surface of the cylinder and interpret your result in terms of conservation of 

energy. 

Solution: 

Maxwell's equations, energy density and energy flux in the electromagnetic field  

(a)  Maxwell's equations in SI units are 

,  . 

E∙j = E∙(1/μ0)(∇×B) - ε0(∂E/∂t)∙E 

= -(1/μ0)∇∙(E×B) + B∙(1/μ0)(∇×E) - ε0(∂E/∂t)∙E 

= -(1/μ0)∇∙(E×B) - (1/μ0)B∙(1/μ0)(∂B/∂t) 

= -(1/μ0)∇∙(E×B) - (∂/∂t)((1/2μ0)B
2
 + (ε0/2)E

2
). 

(∂/∂t)((1/2μ0)B
2
 + (ε0/2)E

2
) + (1/μ0)∇∙(E×B) = -E∙j. 

 

Interpretation: 

Let u = (1/2μ0)B
2
 + (ε0/2)E

2
 be the energy density in the electromagnetic field. 

Let S = (1/μ0)(E×B) be the energy flux. 

Then (∂u/∂t) + ∇∙S = -E∙j. 

. 

This is a statement of energy conservation.  The rate at which the field energy in a volume 

decreases equals the rate at which it leaves across the boundaries plus the rate at which it gets 

converted into other forms. 

 

(b)  In the wire j = σE.  Let j = j ez, I = jπa
2
 = σEπa

2
.  E = I/(σπa

2
). 

On the surface of the wire E = I/(σπa
2
) k. 

Outside of the wire B = eφ μ0I/(2πr).  On the surface B = eφ μ0I/(2πa).  

.    

S =  -eρ I
2
/(2σπ

2
a

3
). 

Energy is flowing into the wire and is converted into heat. 

[The field energy that is flowing into the wire per unit length is P = S2πa = I
2
/(σπa

2
). 

The thermal energy dissipated per unit length is P = I
2
Runit length. 

Runit length = 1/(σπa
2
). 

Therefore thermal energy dissipated per unit length = field energy flowing into the wire per unit 

length.] 

  



Problem 6: 

A wave packet for a quantum mechanical particle of mass m in one dimension is described by 

𝜓(𝑥, 𝑡) =
1

√2𝜋
lim𝑅→∞ ∫ 𝑑𝑘 𝜙(𝑘)

+𝑅

−𝑅
exp(𝑖[𝑘𝑥 − 𝜔(𝑘)𝑡]) , 

where  𝜙(𝑘) ∝ 𝑒𝑥𝑝 (−
(𝑘−𝑘0)2

4(∆𝑘)2 )  is a “strongly peaked” distribution around k = k0  

with ΔkΔx = ½ at t = 0. 

(a)  Show that  𝜓(𝑥, 0) =
1

√Δ𝑥√2𝜋
𝑒𝑥𝑝(𝑖𝑘0𝑥)𝑒𝑥𝑝 (

−𝑥2

4(Δ𝑥)2)  (evaluate the integral), 

and find the probability density  |ψ(x, 0)|
2
 of the particle.  Use ΔkΔx = ½  to eliminate Δk.  Show 

your work! 

(b)  For a free particle E = ħω = ħ
2
k

2
/(2m).  Show that for a free particle 

|𝜓(𝑥, 𝑡)|2 =
1

Δ𝑥(𝑡)√2𝜋
𝑒𝑥𝑝 (

−(𝑥−
ℏ𝑘0𝑡

𝑚
)

2

2(Δ𝑥(𝑡))2 ),  with ∆𝑥(𝑡) = √(∆𝑥)2 +
ℏ2𝑡2

4𝑚2(∆𝑥)2  . 

(c)  Determine the group velocity of the wave packet. 

 

(d)  Evaluate the time it takes for the wave-packet to double in spatial extent, specifically if the 

particle is an electron and Δx ~10 nm, at t = 0. 

 

Useful integrals:  

∫-∞
+∞

exp(-αx
2
)dx = √(π/α)   

∫-∞
+∞

exp(-αx
2
 + iβx))dx = (π/α)

1/2
exp(-β

2
/(4α)) 

Note:  You can complete some parts of the problem by using the given results without evaluating 

the integrals. 

 

Solution: 

(a)  Normalize ϕ(k): 

N
2
∫-∞

+∞
exp(-(k – k0)

2
/(2(Δk)

2
))dk = 1.    ∫-∞

+∞
exp(-(k – k0)

2
/(2(Δk)

2
))dk = Δk√(2π). 

N = 1/(Δk√(2π))
1/2

. 

ψ(x, 0) = [exp(ik0x)N/√(2π) ]∫-∞
+∞

exp(-(k – k0)
2
/(4(Δk)

2
) + ix(k – k0))dk  

= [(Δk)
1/2

2
1/4

/π
1/4

]exp(ik0x)exp(-x
2
(Δk)

2
) = [Δx

-1/2
(2π)

-1/4
] exp(ik0x)exp(-x

2
/(4Δx

2
)) 

|ψ(x, 0)|
2
 = [1/(Δx(2π)

1/2
)] exp(-x

2
/(2Δx

2
)) 

This is a Gaussian with  σ = Δx centered at x = 0. 

 

 

  



(b)  ψ(x, t) = (2π)
-1/2

∫-∞
+∞

 ϕ(k, t) exp(ikx) dk 

ϕ(k, t) = N exp(-(k – k0)
2
/(4(Δk)

2
) - iħk

2
t/(2m )) 

N = 1/(Δk√(2π))
1/2

. 

-(k – k0)
2
/(4(Δk)

2
) + ixk  - iħk

2
t/(2m)  

= -(k – k0)
2
/(4(Δk)

2
) + ix(k – k0) – iħ(k – k0)

2
t/(2m) + iħk0

2
t/(2m) - iħkk0t/m + ik0x 

= -(k – k0)
2
[1/(4(Δk)

2
) + iħt/(2m)] + i(k – k0)[x - ħk0t/m] + iħk0

2
t/(2m) - iħkk0

2
t/m + ik0x 

= -(k – k0)
2
[Δx

2
 + iħt/(2m)] + i(k – k0)[x - ħk0t/m] - iħk0

2
t/(2m)  + ik0x 

ψ(x, t) = Δx
1/2 

[(Δx
2
 + iħt/(2m))]

-1/2
(2π)

-1/4
 ]* 

exp(ik0x - iħk0
2
t/(2m)) exp[-¼(x - ħk0t/m)

2
/(Δx

2
 + iħt/(2m))] 

|ψ(x, t)|
2
 = exp[-½ (x - ħk0t/m)

2
/Δx(t)

2
]/[ (2π)

1/2
 Δx(t)], with Δx(t) = (Δx

2
 + ħ

2
t
2
/(4m

2
Δx

2
)
1/2

. 
 

(c)  ψ(x, t)|
2
 is a Gaussian with  σ = Δx(t) centered at x = ħk0t/m.  The center of the wave packet 

moves with speed ħk0t/m.  This is the group velocity vg = dω/dk of the wave packet. 

 

(d)  Δx(t) = (Δx
2
 + ħ

2
t
2
/(4m

2
Δx

2
)
1/2

 = 2Δx 

Δx
2
 + ħ

2
t
2
/(4m

2
Δx

2
) = 4Δx

2
.  t

2
 = 12 Δx

4
 m

2
/ ħ

2
. 

t
2
 = 12*10

-32
*(9.1*10

-31
)
2
/(1.05*10

-34
)
2
 s

2
 =  ~10

-23
 s

2
,  t ~ 3*10

-12
 s. 

We get the same order of magnitude result by just using the uncertainty principle. 

  



Problem 7: 

Calculate the force, as observed in the laboratory, between two electrons moving side by side 

along parallel paths 1 mm apart, if they have a kinetic energy of 1 eV and 1 MeV. 

Solution: 

We can calculate the force between the electrons in the rest frame of the electrons from F = qE 

and transform this force to the laboratory frame, or we can calculate the electric field of one of 

the electrons in its rest frame, transform it into and electric and magnetic field in the laboratory 

frame, and calculate the force between the electrons from F = q(E + v×B). 

 

Assume the electrons move with velocity vi in the x-direction in the laboratory frame 

K.  Electron 1 has coordinates y = z = 0 and electron 2 has coordinates y = y0 = 1 mm, z = 0. 

In the rest frame K' of the electrons the force electron 1 exerts on electron 2 is  

F' = j kqe
2
/y'0

2
 = j kqe

2
/y0

2
. 

F' = j 9*10
9
*(1.6*10

-19
)
2
/10

-6
 N = j 2.3*10

-22
 N 

F' = dp'/dt' = dp'/dτ, where τ is the proper time, a Lorentz invariant. 

In K the force on the charge is F = dp/dt = (1/γ)dp/dτ, γF = dp/dτ. 

Here   γ = (1 - β
2
)
-1/2

, β = vi/c. 

From the transformation properties of the momentum 4-vector  

p
μ
 = (γmc,γmv) = (E/c,p) = under a Lorentz transformation,  

p||= γ(p'|| + βE'/c), p⊥ = p'⊥, we have 

γF⊥ = dp⊥/dτ  = dp'⊥/dτ  = dp'⊥/dt' = j kqe
2
/y0

2
, F⊥ = j (1/γ)kqe

2
/y0

2
. 

γF|| = dp||/dτ  = γdp'||/dτ  = γdp'||/dt'  = 0. 

We have used that in K' d(E'/c)/dt'  = (1/c)dE'/dt' = 0 since K' is the rest frame of the charges. 

The force between the electrons in the lab frame  is F⊥ = j (1/γ)kqe
2
/y0

2
. 

1 eV = (1/2)mv
2
, γ = 1, F = j  2.3*10

-22
 N. 

1 MeV = (γ - 1)mc
2
, (γ - 1) = 1.96, γ = 2.96, F = j  7.8*10

-23
 N. 

   



Problem 8: 

A simple pendulum of length l (massless string) and mass m is suspended from a pivot point on 

the circumference of a thin massless disc of radius a that rotates with a constant angular velocity 

ω about its central axis as shown in the figure. 

Find the equation of motion of the mass m in terms of the generalized variable θ. 
 

 
Solution: 

Lagrangian Mechanics 

 

  



 


