2003 Qualifying Exam

Part II

Mathematical tables are provided.

Calculators are allowed.

Please clearly mark the problems you have solved and want to be graded.  Do only mark the required number of problems.

Physical Constants:

Planck constant: h = 6.6260755  10-34 Js,  = 1.05457266  10-34 Js 
Boltzmann constant: kB = 1.380658  10-23 J/K 

Elementary charge: e = 1.60217733  10-19 C 

Avogadro number: NA = 6.0221367  1023  particles/mol 

Speed of light: c = 2.99792458  108  m/s 

Electron rest mass: me = 9.1093897  10-31 kg 

Proton rest mass: mp = 1.6726231  10-27 kg 

Neutron rest mass: mn = 1.6749286  10-27 kg 

Bohr radius a0 = 5.29177  10-11 m 

Compton wavelength of the electron: c = h/(me c) = 2.42631  10-12 m

Permeability of free space:  0 = 4 10-7 N/A2
Permittivity of free space:  0 = 1/0c2
Conversions:
1 in. = 2.54 cm

1 ft. = 0.3048 m

1 lb = 4.448 N

Section I:

Work 3 out of the 4 problems, problem 1 – problem 4.

Problem 1:
Space program pioneers told Columbia investigators that shuttle wings were never designed to be struck by anything like Columbia’s left wing did within minutes after lift off on January 16, 2003.  Some of the retired NASA officials who helped design the spacecraft stated that the reinforced carbon-composite panels lining the leading edge of the shuttle wings were never meant to withstand a blow of any sort.
Let us assume that a 2.5 pound chunk of insulation, measuring 20 inches by 16 inches by 6 inches, broke off Columbia’s external fuel tank and struck the left wing.
(a)  Estimate the kinetic energy of this chunk of foam in the frame of the shuttle when it was traveling with a speed of 700 ft/sec relative to the shuttle wings.
(b)  Estimate the minimum impulse I delivered to the wing when the foam struck the wing 
  .
(c)  Estimate a nonzero lower limit of the pressure exerted by the foam on the leading edge of the wings.
Problem 2:
In the following, two examples of a decaying system are presented, where the decay products travel with velocities comparable to the speed of light c.

1. Two electrons are ejected simultaneously in opposite directions from an atom.  Each electron has a speed as measured by a laboratory observer of 0.5c.  What is the speed of one electron as seen from the rest frame of the other electron

(a)  in the classical approach?

(b)  in the relativistic approach?

Distinguish carefully the velocities in the respective frames.

2. The neutral pi meson, °, has a rest mass of 135 MeV/c2.  It decays into two photons ( rays) of equal energy and opposite direction in its rest frame.  In the laboratory frame the ° is moving with a total energy 25% larger than its rest energy.
(a)  What are the energies of the  rays, as measured in the laboratory, if the decay process causes them to be emitted in opposite directions along the pion's original line of motion?

(b)  What is the velocity of each  rays as observed by the other?

Problem 3:
A thin metallic square frame of mass m, electrical resistance R, and side a is rotating about an axis perpendicular to a uniform magnetic field B as shown in the figure.  Initially the square frame rotates with a frequency 0.
(a)  Determine the average energy loss per cycle due to Joule heating.

(b)  Determine the time it takes for the frequency of the rotation to slow down to 1/e of its initial value.  (Assume that the fractional change in the frame’s rotation frequency per cycle is small.)
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Problem 4:

Consider a long cylindrical conductor of radius a.  Inside this conductor there is a cylindrical hole of radius b.  The length axes (z axes) of the cylindrical conductor and the hole are parallel, and the distance between the cylinder axis and the hole axis is d. The condition a > b + d is satisfied.  The conductor carries a DC current I which is parallel to the cylinder z axis and distributed uniformly to give a constant current density j.

(a)  Sketch the conductor geometry and obtain an algebraic expression for the current density j in terms of a, b, d, and I.

(b)  Calculate the magnetic field B at any point inside the hole.

(Use the superposition principle.)

(c)  What happens, if the cylinders are concentric (d = 0)?

Section II:

Work 2 out of the 4 problems, problem 5 – problem 8.

Problem 5:

The application of the Uncertainty Principle and basic quantization conditions on energy and angular momentum can lead to good estimates for typical energy eigenvalues of atomic, nuclear, and molecular systems.

You are given that the size of the electron cloud of a typical atom is 10-10 m and that an electron has a mass of 10-30 kg.  The size and mass of a typical nucleus are 10-15 m and 10-26 kg, respectively.  Use  = 10-34 Js and 1 eV = 10-19 J.  Do the calculations in orders of magnitude.  Express the results in eV.

(a)  Estimate the energy Ee of a typical electron eigenstate in an atom.  Assume that the kinetic energy, the potential energy, the total energy, and the energy difference between the lowest lying eigenstates all have approximately the same magnitude.

(b)  Estimate the energy En of a typical nuclear eigenstate.

(c)  Now consider a diatomic molecule.  Take the separation between the atomic centers to be the size of a typical atom.  Estimate the smallest non-zero rotational energy, Er, for rotations about the axis perpendicular to the line joining the centers of the atom.  Estimate Er.

(d)  For the diatomic molecule vibrational motion (energy Ev) may be modeled by treating the atoms as being bound by a spring.  The "spring" exists as a result of the electronic motion which binds the atoms. The effective spring constant may be estimated by assuming that an extreme vibrational distortion on the order of the molecular size requires an energy of the order of Ee.  Estimate the oscillation energy Ev. 

(Rem: Start from E = .}

(e)  Order the different energies by magnitude.

Problem 6:

An elementary spin-1/2 particle with magnetic moment µB is in it’s lower level state in a magnetic field B parallel to z-axis.  At time t = 0 the magnetic field B is flipped to point parallel to x-axis.

(a)  Find the time-dependent spin wave function of the particle for t > 0.
(b)  Find the rotation frequency for the magnetic moment of the particle.

Problem 7:

An Atom with orbital angular momentum L and spin S is in an external magnetic field B = B
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.  For weak external magnetic fields the total angular momentum J = L + S is a good quantum number.  The eigenstate of the system may be taken as |L,S,J,MJ >.  The energy shift E due to this distortion is given by the matrix element

<L,S,J,MJ|H’|L,S,J,MJ> .






(1)

(a)  Write down the interaction Hamiltonian H’ of the atomic electrons with the external field B.  (Rem: Energy E = B.)
(b)  Show, that

E =  gJBB0MJ,







(2)

with B the Bohr magneton (B = e/(2mc)), and gJ the Lande g factor,
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(c)  Write down the expression for an effective total magnetic moment J and the total interaction Hamiltonian.
Problem 8:

Let us consider a simple quantum mechanical scattering problem in the low energy region.  A beam of particles of mass m and energy E is scattered by a central potential U(r).  Here we assume that the s-wave scattering dominates and ignore all higher angular momentum states. (You do not need to justify this assumption.)
For an impenetrable spherical potential given by

U(r) = 0,  r  a,
U(r) = , r < a.
(a)  What differential equation does the l = 0 partial wave satisfy?
(b)  Find the phase shift 0 for s-wave scattering.
(c)  What is the differential cross section ) and the total cross section T?
(d)  Why is the total cross section always greater than the classical limit of a2?

Note: 
fk()  =  (1/k)l=0(2l+1)exp(il)sinlPl(cos)
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