Algebraic detail

We can rewrite the expression
N(a|+>μ|+>eA|->eB - a|+>μ|->eA|+>eB + b|->μ|+>eA|->eB - b|->μ|->eA|+>eB)
in terms of the Bell states.

The Bell states are:

|ψ+> = N(|+>μ|->e + |->μ|+>e)       

|ψ-> = N(|+>μ|->e - |->μ|+>e)

|ϕ+> = N(|+>μ|+>e + |->μ|->e)

|ϕ-> = N(|+>μ|+>e - |->μ|->e)

 We write

N(a|+>μ|+>eA|->eB - a|+>μ|->eA|+>eB + b|->μ|+>eA|->eB - b|->μ|->eA|+>eB)
= (N/2)[(|+>μ|->eA  +  |->μ|+>eA)X1  +  (|+>μ|->eA - |->μ|+>eA)X2
+ (|+>μ|+>eA + |->μ|->eA)X3   +   (|+>μ|+>eA - |->μ|->eA)X4].

The Xi are different possible states of Bob’s electron.  Let us solve for the Xi.

 a|+>μ|+>eA|->eB - a|+>μ|->eA|+>eB + b|->μ|+>eA|->eB - b|->μ|->eA|+>eB =
(1/2)[|+>
μ|+>eA (X3 + X4) - |+>μ|->eA (X1 + X2) + |->μ|+>eA( X1 - X2) - |->μ|->eA (X3 - X4)].

The factors multiplying a particular combination of the spins of Alice's muon and electron on each side of the equation are equal to each other.  We find

a|->eB = (X3 + X4)/2,
-a|+>eB = (X1 + X2)/2,
b|->eB = (X1 - X2)/2,
-b|+>eB = (X3 - X4)/2.

Therefore we have

X1 = -a|+>e + b|->e,
X2 = -a|+>e - b|->e,
X3 = a|->e - b|-+>e,
X4 = a|->e + b|+>e,

and

(a|+>μ + b|->μ) N(|+>e|->e  -  |->e |+>e)

= (1/2) [|ψ+>(-a|+>e + b|->e) + |ψ->(-a|+>e - b|->e) + |Φ+>(a|->e - b|-+>e) + |Φ->(a|->e + b|+>e)].