In-class group activity 15: Alpha decay
Use an on-line
simulation from the University of Colorado PhET group to stydy alpha decay.
Link to the simulation
http://phet.colorado.edu/en/simulation/alpha-decay. Click "Run Now!".
Explore the interface!
Click the ‘Single Atom’ tab.
Watch the Polonium-211 nucleus until it decays. Click ‘Reset Nucleus’ and watch it again. Repeat this at least 10 more times.
Inspect the Decay Time Chart on the top of the screen. It displays the decay times of all the nuclei you observed. Do you observe a pattern? Can you predict the decay time for the next nucleus?
Answer the following questions:
Question 1
The half-life of the Polonium-211 nucleus is approximately
500 ms. The nucleus decays by emitting an alpha particle. How does this alpha
particle make it out of the nucleus. (Watch what happens in the bottom-half of
the display in "Single Atom" mode.)
(a) A photon supplies the energy to lift it over a potential
barrier. This is similar to the photoelectric effect, where a photon supplies
the energy to an electron to free it from a metal.
(b) Collisions with other nucleons supply the energy to lift the alpha particle
over a potential barrier.
(c) The alpha particle just tunnels through the barrier. The tunneling
probability is relatively high, because the barrier is not much higher than the
total energy of the alpha particle inside the nucleus.
Question 2
After the Polonium-211 nucleus has decayed, a lead-207
nucleus is left behind. Why does lead-207 not decay by emitting an alpha
particle?
(a) Lead-207 does not have enough nucleons to decay.
(b) Even though alpha particles penetrate into the potential barrier, they
cannot tunnel through the barrier, because they cannot emerge on the other side
with positive kinetic energy. In lead-207, the potential barrier for alpha
particles is infinitely thick.
(c) In lead-207, the potential barrier for alpha particles is infinitely high.
(d) Lead 207 does decay by emitting an alpha particle, it just has a half-life
longer than a few seconds, and so we do not see the decay in the simulation.
Question 3
In "Single Atom" mode switch to a custom nucleus. What can
you do in the bottom-half of the display to build a nucleus with a half-life of
a billion years?
(a) Lower the total energy of the alpha particle so that it is barely bigger
than the potential energy at infinity and raise the height of the barrier.
(b) Make the total energy and the barrier height equal to each other.
(c) Lower the total energy of the alpha particle so that it is less than the
potential energy at infinity.
(d) It is impossible to achieve this in this simulation.
Click the ‘Multiple Atoms’ tab.
Quickly empty the
Bucket of Polonium by rapidly clicking the ‘Add 10’ button until the bucket
is empty.
Observe the decay of the nuclei and inspect the Decay Time Chart on the top of the screen.
Click ‘Reset All Nuclei’. Do you observe the same pattern on the Decay Time Chart as in your previous trial? Repeat this experiment a few times to be sure of your answer. Describe any similarities and/or differences in pattern on the Decay Time Chart.
Answer the following questions:
Question 4
The half-life of the Polonium-211 nucleus is approximately
500 ms. What do you observe in "Multiple Atoms" mode?
(a) Exactly 50% of the nuclei decay in a time interval
shorter or equal to 500 ms.
(b) More than 50% of the nuclei may decay in a time interval shorter or equal to
500 ms, but some may live longer than 2 s.
(c) More than 50% of the nuclei always live longer than 500 ms, but some decay
immediately.
(d) All nuclei always decay in a time interval less than 1 s.
Question 5
If you would start out with ~8000 Polonium-211 nuclei at t
= 0, approximately how many Polonium-211 nuclei would you have left at t = 2 s?
(a) zero
(b) 2000
(c) 4000
(d) 800
(e) 250
(f) 500