Main points:
In Physics 513 we covered relativistic kinematics and dynamics. We practiced the Loentz transformation of 4 -vectors and specifically considered 4 different 4 -vectors.

4-vector position: $\quad \mathrm{x}^{\mu}=\left(\mathrm{x}_{0}, \mathbf{r}\right)$
4-vector velocity: $\quad \mathrm{u}^{\mathrm{H}}=(\gamma \mathrm{c}, \gamma \mathbf{v})$
4-vector velocity: $\quad \mathrm{p}^{\mu}=(\gamma \mathrm{mc}, \gamma \mathrm{mv})=(\mathrm{E} / \mathrm{c}, \mathbf{p})$
4 -vector wave vector: $k^{\mu}=(\omega / \mathrm{c}, \mathbf{k})$
The dot product of any two 4 -vectors, $\left(\mathrm{a}_{0}, \mathbf{a}\right) \cdot\left(\mathrm{b}_{0}, \mathbf{b}\right)=\mathrm{a}_{0} \mathrm{~b}_{0}-\mathbf{a} \cdot \mathbf{b}$ is Lorentz invariant.
In relativistic E\&M we encounter some additional 4-vectors.
4-vector current: $\quad j^{\mu}=(c \rho, \mathbf{j})$
4-vector potential: $\quad \mathrm{A}^{\mu}=(\Phi / \mathrm{c}, \mathbf{A})$
Note: j^{μ} and A^{μ} are in general function of position and time. For the transformed expressions to make sense in frame K^{\prime}, we also need to transform the position 4 -vector, so that we have $\mathrm{j}^{\prime \mu}\left(\mathrm{x}^{\prime \mu}\right)$ and $\mathrm{A}^{\prime \mu}\left(\mathrm{x}^{\prime \mu}\right)$.

We also show that vector operators can transform as 4 -vectors.
The electric and magnetic fields are NOT components of a 4 -vector but of a tensor.
For the exam you need to be able to use the following transformation properties,
Assume reference frame K' moves with velocity v with respect to reference frame K .
$\mathbf{E}_{| |}^{\prime}=\mathbf{E}_{\| \mid}, \mathbf{B}_{\| \mid}^{\prime}=\mathbf{B}_{\|}$,
$\mathbf{E}_{\perp}^{\prime}=\gamma(\mathbf{E}+\mathbf{v} \times \mathbf{B})_{\perp}$,
$\mathbf{B}_{\perp}=\gamma\left(\mathbf{B}-\left(\mathbf{v} / \mathrm{c}^{2}\right) \times \mathbf{E}\right)_{\perp}$.
Here || and \perp refer to the direction of the relative velocity.
For the fields, we also have scalar quantities that is invariant under a Lorentz transformation.
$\mathbf{E}^{2}-c^{2} \mathbf{B}^{2}$ and $(\mathbf{E} \cdot \mathbf{B})^{2}$ are invariant under a Lorentz transformation.
To calculate the electromagnetic force on a charged particle in two different reference frame we discuss two approaches.
(i) Transform the fields and use $\mathbf{F}^{\prime}=\mathrm{q}\left(\mathbf{E}^{\prime}+\mathbf{v} \times \mathbf{B}^{\prime}\right)$.
(ii) Transform the momentum 4 -vector and use $\mathrm{F}^{\prime}=\mathrm{d} \mathbf{p}^{\prime} / \mathrm{dt}{ }^{\prime}$.

We review the Doppler shift formula and show that we can compare intensities by transforming the fields.

