Problem 1:

Consider this problem from the class notes. Solve part (a) of the problem using the density matrix formalism.

(a) The density operator at time t = 0 is ρ(0) = |νe><νe|.  Write down the density matrix ρ(0) in the eigenbasis of the Hamiltonian {|ν1>, |ν2>}.
(b) Write down the matrix of H in this basis and find the matrix of [H,ρ(0)].
(c) Find dρnm/dt at t = 0 and solve for ρnm(t).
(d) Find the probability that a measurement at time t will yield an electron neutrino.

Solution:
(a)  The density operator at time t = 0 is ρ(0) = |νe><νe|.   The density matrix has elements
ρnm = <νne><νem>,  (n, m = 1,2).
ρ11 = sin2θ,  ρ12 = -sinθ cosθ, 
ρ21 = -sinθ cosθ,  ρ22 = cos2θ.

(b)   The matrix of H as has elements
H11 = E1,  H12 = 0, 
H21 = 0,  H22 = E2.

[H,ρ] = Hρ - ρH.  The matrix if [H,ρ] has elements
[H,ρ]11 = 0,   [H,ρ]12 = (E2 - E1)sinθ cosθ, 
[H,ρ]21 = (E1 - E2)sinθ cosθ,   [H,ρ]22 = 0.

(c)  dρ/dt = (iħ)-1[H,ρ].
11/dt = dρ21/dt = 0.  The diagonal elements of the matrix do not change.
12/dt = -(iħ)-1(E1 -E212,  dρ21/dt = -(iħ)-1(E2 -E2121.
Therefore for n ≠ m, ρnm(t) = ρnm(0)exp(-i(En - Em)t/ħ).

(d)  The projector into the subspace spanned by |νe> is |νe><νe|.
The probability that a measurement at time t will yield an electron neutrino is
Pνe(t) = Tr{ρ(t)|νe><νe|}.
(ρ(t)|νe><νe|)nm = ∑jρnj(t)ρjm(0).
(ρ(t)|νe><νe|)11 = ρ11(t)ρ11(0) + ρ12(t)ρ21(0) = sin4θ + sin2θ cos2θ exp(-i(E1 - E2 )t/ħ).
(ρ(t)|νe><νe|)122 = ρ21(t)ρ12(0) + ρ22(t)ρ22(0) = cos4θ + sin2θ cos2θ exp(i(E1 - E2 )t/ħ).
Tr{ρ(t)|νe><νe|} = sin4θ + cos4θ + 2sin2θ cos2θ cos((E1 - E2 )t/ħ).
The off-diagonal elements of ρ are responsible for the interference effects.